ELECINF344/381

Partie interactive du site pédagogique ELECINF344/ELECINF381 de Télécom ParisTech (occurrence 2011).

Catégories

Copterix: motors control, 1st test

Sensors and effectors

For now, we configured all sensors and effectors:

  • The Sharp, the distance sensor, works in 1-5m range and we get values with 3cm precision
  • Inertial Measurement Unit (gyros, accelerometers and magnetometers return correct values)
  • Radio Frequency (remote control, see video)
  • Motors (see video)

Here is a small video where we directly control motors’ speed with remote control:

Communication

We now have a reliable communication between our PCB and the Gumstix, thanks to Samuel Tardieu’s help.
We mostly use ZeroMQ to share data between our processes and even between our computers !

Kalman

Kalman is quite smoothly, works as well on PC as on Gumstix, and we are now optimizing each operation. The actual filter is fast enough for real-time execution (we spend a lot more time to wait after data than to actually process it), but we want the filter to use less processor working time in order to execute other heavy tasks, like Lucas and Kanade (video tracking algorithm).
We do now have a way to get by Wifi only the Kalman’s results in order to display them on a PC using OpenGL as you could have seen it on our previous videos.

Next step

We are now up to test for the first time real servomechanism PID on our Copterix !

Sur le même sujet :

  1. Copterix : communication between Gumstix and STM32
  2. Copterix : first moves
  3. Copterix : les aventures commencent
  4. RoseWheel motor control: 1st step
  5. Copterix : finalisation du filtre de Kalman

1 comment to Copterix: motors control, 1st test