ELECINF344/381

Partie interactive du site pédagogique ELECINF344/ELECINF381 de Télécom ParisTech (occurrence 2011).

Catégories

Copterix : ubuntu sur gumstix && communication STM32/Gumstix

Hier et aujourd’hui, j’ai -comme Casper- fait passer Ubuntu d’ext3 à nilfs2 pour des raisons de performances et pour augmenter la durée de vie de la microSD.

Les noyaux fournis par Gumstix ne le supportant pas, j’ai recompilé le kernel (patché pour supporter la Camera), généré un uInitrd et reconfiguré le bootloader.

En parallèle, j’ai terminé un script faisant un debootstrap adapté à nos besoins, avec les paquets et les fichiers de configurations idoines. Il permet ensuite de formater correctement la microSD et d’y installer notre ubuntu fraichement créé.

 

Loïc continue de travailler sur la communication Gumstix/STM32. Pour des raisons de vitesse de transfert (avoir au moins 1000 paquets/s, un paquet contenant l’ensemble des données des capteurs), il a poussé l’UART à 1 Mhz et est en train de faire des testbenchs pour mesurer le débit utile.

[CASPER] Beagleboard, pilotes et pwm

Voici un petit compte rendu de ce que Thomas et moi-même avons réalisé hier et aujourd’hui.

 

Bootstrap

Partant de ce que Thomas avait réalisé précédemment, nous avons automatisé l’installation de la carte SD pour la beagleboard. En effet, celle-ci doit contenir dans une première partition FAT les fichiers du noyau nécessaires au démarrage, et sur une deuxième partition du format de notre choix la racine du système de fichiers.

Afin de pouvoir choisir plus finement quel noyau et quel paquets nous souhaitons installer sur notre beagleboard, et pour pouvoir la placer rapidement dans une configuration « prête à utiliser » lors d’une éventuelle réinitialisation, nous avons choisi de ne pas utiliser les images de rootfs proposées sur internet par la communauté de développeurs beagleboard.

Nous avons donc construit notre propre image rootfs à l’aide de l’outil debootstrap couplé à l’émulateur qemu, ce qui permet de créer sur un ordinateur portable classique une distribution pour une architecture arm, par exemple. Nous avons inclus de nombreux paquets tels que la bibliothèque opencv qui nous sert pour le traitement de l’image, et SVOX pico, qui nous sert pour la synthèse vocale.

Nous avons ensuite configuré la distribution afin d’obtenir une console sur le port série et paramétré la distribution afin de la rendre directement utilisable.

Ces étapes ont été totalement automatisées dans un script, ce qui nous permettrait éventuellement de regénérer tout ceci très rapidement, tout en faisant évoluer nos paramètres.

Nous avons ensuite généré les fichiers de boot à partir du noyau de sorte qu’il supporte le système de fichiers nilfs2¹ (Le garbage collector du nilfs2 sera lancé automatiquement, dès lors que les paquets nilfs-tools et nilfs2-tools sont installés sur le système. Il faut donc les ajouter dans le script debootstrap_init.sh).

 

Le système de fichiers nilfs2 offre en résumé deux avantages : sa structure garantit l’intégrité des fichiers écrits ce qui évite la corruption de la carte en cas de coupure de courant ou de plantage et il offre d’excellentes performances sur la carte SD en comparaison avec l’ext2 par exemple.

Cela est certainement dû à sa structure circulaire, et à son mode de fonctionnement avec garbage collector. En effet, les fichiers supprimés ne sont pas effacés immédiatement, ce qui aurait pour effet de ralentir les opérations. Ces effacements ne sont réalisés que beaucoup plus tard, à la fin d’un compte à rebours ou lorsque les segments propres sont en nombre insuffisant. Ainsi, l’écriture est rapide puisque sans effacement, et l’effacement est retardé ce qui à nouveau permet de gagner beaucoup en vitesse de fonctionnement. (L’installation de paquets logiciels est aussi rapide que sur un ordinateur moderne avec nilfs2, ce qui était loin d’être le cas avec ext2 puisqu’en fonction des dépendances, il fallait entre 15 et 60 min)

 

Ensuite, un autre script que nous avons réalisé automatise la génération d’une archive tarball rootfs.

Une version adaptée du script setup_sdcard.sh (http://github.com/RobertCNelson/omap-image-builder/blob/master/tools/setup_sdcard.sh) nous permet ensuite, là encore de manière automatisée, de formater la carte mémoire et de créer les partitions, de générer les fichiers uImage et uBoot, et enfin de copier les fichiers de boot et d’extraire le tarball rootfs sur les partitions correspondantes.

Nous avons de plus écrit une notice détaillant l’utilisation de ces scripts en vue de générer rapidement une installation pleinement fonctionnelle et incluant tous les paquets logiciels nécessaires sur la carte SD.

 

¹ Merci PHH pour les conseils !

 

 

Pilotes et PWM

Thomas continue de se pencher sur la question des pilotes. Il a réalisé un helloworld que nous ne pouvions malheureusement tester sur la beagleboard, du fait que celle-ci était immobilisée par les opérations de préparation de la carte SD. Maintenant que celle-ci est prête, nous allons pouvoir tester la compilation et l’installation dynamique de ce module de communication helloworld dans le noyau.

Étant donné que la beagleboard n’était pas prête, et outre sa participation à la création de la nouvelle distribution au travers de son expérience précédente avec la première installation que nous avions réalisée avec le script setup_sdcard.sh, Thomas a continué de se documenter sur la réalisation de pilotes et sur l’utilisation des modules PWM sur la beagleboard.