Partie interactive du site pédagogique ELECINF344/ELECINF381 de Télécom ParisTech (occurrence 2011).


IRL is reaching its final rush to the last presentation.

ILDA and Web app
Since the last post we did a lot of tests in real situation, namely with several programs running on the board. We deemed that the operation to translate a text to an ILDA animation tends to be far too slow that’s why we decided to rely on a web app based on the google appengine api for Python. Yesterday, we turned words into action and started to create the web app and a proxy in the card to query the webapp or in case of a failure, redirect request to the embedded slow instance of the program. We did deploy the web app on appspot.com and our first tests tend to confirm that the service is accelerated by a factor of 30 to 60 depending on the load of the board. We did realize a website to present our restfull API to that webapp and we will put it online as soon as possible.

As far as website are concerned, we want to introduce our brand new website. Feel free to comment or share any kind of feedback.

We hunted some bugs in our code and yet it works better and we don’t intend to make any kind of fix on it till the presentation.

DMX and additional board
We have contacted TSM and we will be able to try our code with real equipments.
We can communicate with our additional board via Zigbee. We have now to connect this feature with the other parts of the project with 0MQ.

Software FIFO
Our software fifo works, we are putting all the pieces together to make our « driver/conductor/leader » module which will manage all the features of the project.
Today we’ll stick the pieces, it’s a milestone !

IRL : Settings !

In our last article we described some ways to enhance the display of a text scrolling smoothly.
We actually tried several possibilities of settings for the scrolling text and finally found a convenient one (as shown on the video above).

We did some major improvements concerning the speed of the code on the card succeeding in speeding it by a factor of 5. We deemed that a major issue of that program lays on the access time of the memory. Indeed it takes more than 20 seconds to write an ILDA file of a tweet from the ram to the flash. Samuel suggested that we could use a socket to directly send the ILDA file from the python script to the C program in charge of the FPGA communication. In fact, with such a strategy we would avoid the slow speed flash access and be able to send a tweet to the laser around 30 seconds after its validation.

In addition we’re going to add some bit stuffing to make the frames equally populated in terms of points so as to assure a constant frame rate. You can easily notice that disturbing effect on the video above.

In parallel, we’re getting familiar with the DMX protocol and are working on the DMX board.
We haven’t forgotten the software fifo between the C program and the FPGA. We deemed that a zeromq socket would be a interesting solution and we are currently working on it.