[LASMO] SD card and galvanometers in the PCB design

Because finishing the design of the PCB is now the priority task, I’ve been working on several parts of it: namely, linking the SD card connector and the galvanometer drivers.

MicroSD connector

The microSD card connector we found in ExpeditionPCB is manufactured by JAE (Japan Aviation Electronics). The pins correspond to those of the microSD standard and are linked to one of the SPI interfaces available on the STM32F7. MicroSD cards can work on supply voltage from 2.7 to 3.3V, so we just use the same 3.3V supply as the F7.

Our SD card connector’s connections…
… and the pins it’s connected to on the F7 

Galvanometer drivers

The drivers of the galvanometer work with a balanced analog input ranging from 0 to 5V. Since the DAC of the F7 outputs a single-ended signal ranging from 0 to 3.1V (according to the datasheet), this is an issue we had to resolve.

We basically had to convert an analog single-ended signal to a balanced one, and amplify it with a 5/3.1 ratio. We achieved this by using an ADA4941-1 amplifier with two resistances, as represented below.

Signal adaptation circuit between the DAC’s single-ended output (GALVA_X signal) and the driver’s balanced input (GALVA_DRIVERX_IN – and +). The two resistors inside the ADA are of the same value.

This circuit is composed of a non-inverting amplifier (taking IN and FB as entry), which, with the resistances of 10kΩ and 6.2kΩ, multiplies the signal by 1+3.1/5 = 1.62 = 5/3.1 (approximately). Then a inverting amplifier with a gain of 1, create a signal symmetric to the OUTP signal with respect to the REF signal value. We set REF at 5V so that the signal can have a 5V range around the offset value of 5V. That’s also why we linked the REF signal to the GND port of the driver, so that the driver can see the signal as a balanced signal.

Luc Moussiegt

3 Replies to “[LASMO] SD card and galvanometers in the PCB design”

    1. Yes there is, we chose the SPI before we had chosen our controller because it was widespread but I guess that’s irrelevant now. SPI still have advantages over SDIO in the fact that it’s easier to use and well-documented, whereas 1-bit SDIO is slightly faster (but not that much) and using it could free an SPI interface for some other use (but we don’t need that currently)

Leave a Reply

Your email address will not be published. Required fields are marked *