A solid foundation

Last week we met with Alain Croullebois, the go-to guy for mechanical questions at the school. We went to his workshop with the motor we received during the holidays : this Turnigy Multistar 4225-390Kv 16 Poles Multi-Rotor Outrunner. We discussed what the physical structure of the Phyllo could look like.

Here is a global diagram of what we came up with :

The mechanical structure of the whole Phyllo

The Base

For the base of our Phyllo, he suggested stacking two 30cmx30cm aluminium plates 8mm thick, with a separation of 6cm between the two plates maintained by 2cm wide pillars at each corner.… Read more

LED’s do some tests

Yesterday I set out to test the LEDs we received : ASMG-PT00-00001 and LE RTDUW S2WP. The first is a powerful RGB LED, while the second is an even more powerful RGBW LED. They need to be quite powerful because in order to avoid a blurry image due to the motor rotation the duration of the flashes must very brief, and since the LEDs are flashed only once every 137.5 degrees of rotation that means they are off most of the time.

The goal here is to test under conditions similar to those the LEDs will actually be used in : once every 1/30 seconds, they will be turned on for 100µs using high frequency PWM modulation for the colors, and then switched off again.… Read more

The magnet strikes back

In a previous post we discussed several ideas on how to detect the direction of neighbouring Phyllos relative to a given Phyllo. Our favourite idea in this post was based on a mix of Wifi and IR : the Phyllos would cooperate using Wifi to turn their IR emitters on one at a time to allow the others to detect it using IR detectors.

But this idea raises several problems. The most notable is IR reflections : they could spoof the Phyllos into detecting neighbours in the wrong directions. We thought we would be able to differentiate an IR reflection from a direct emission by comparing the amplitudes, but according to Alexis, we will have too much trouble.… Read more

Generating 3D Models

TL;DR

  • We need to generate 3D models of phyllotactic patterns.
  • We give an explanation of how to generate phyllotactic patterns on a sphere.
  • We present an issue we encountered, and the solution we found.

Why 3D Models ?

When we first started thinking about the project, we quickly realized we would need to generate 3D models of the sculpture ourselves.

First because we need to have full control on the model, to try various configurations for the future 3D printed sculpture. And second because it will greatly help us visualize all the kinds of animations we are imagining.

Accordingly, Vlaya wrote a script using the blender python API to generate a 3D model, following John Edmark’s online explanation.Read more